
Maximizing System Utilization via Parallelism
Management for Co-Located Parallel Applications

Younghyun Cho
Seoul National University

Seoul, South Korea
younghyun@csap.snu.ac.kr

Camilo A. Celis Guzman
Seoul National University

Seoul, South Korea
camilo@csap.snu.ac.kr

Bernhard Egger
Seoul National University

Seoul, South Korea
bernhard@csap.snu.ac.kr

ABSTRACT
With an increasing number of cores and memory controllers
in multiprocessor platforms, co-location of parallel appli-
cations is gaining on importance. Key to achieve good per-
formance is allocating the proper number of threads to co-
located applications. This paper presents NuPoCo, a frame-
work for automatically managing parallelism of co-located
parallel applications on NUMA multi-socket multi-core sys-
tems. NuPoCo maximizes the utilization of CPU cores and
memory controllers by dynamically adjusting the number of
threads for co-located parallel applications. Evaluated with
various scenarios of co-located OpenMP applications on a
64-core AMD and a 72-core Intel machine, NuPoCo achieves
a reduction of the total turnaround time by 10-20% compared
to the default Linux scheduler and an existing parallelism
management policy focusing on CPU utilization only.

CCS CONCEPTS
•Computingmethodologies→ Parallel computingmethod-
ologies;

KEYWORDS
Parallelism management, resource utilization, OpenMP
ACM Reference Format:
Younghyun Cho, Camilo A. Celis Guzman, and Bernhard Egger.
2018. Maximizing System Utilization via Parallelism Management
for Co-Located Parallel Applications. In International conference
on Parallel Architectures and Compilation Techniques (PACT ’18),
November 1–4, 2018, Limassol, Cyprus. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3243176.3243199

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PACT ’18, November 1–4,2018, Limassol, Cyprus
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5986-3/18/11. . . $15.00
https://doi.org/10.1145/3243176.3243199

1 INTRODUCTION
In modern multi-core platforms, parallel applications often
share computational and memory resources. Parallel work-
loads running on these platforms are managed by parallel ap-
plication runtimes such as OpenMP and Intel TBB. Generally,
such workloads are executed with a configurable number of
threads [20, 37]. In this context, determining the proper num-
ber of threads for co-located parallel applications to optimize
application performance [38] or platform throughput [42]
has been an important topic of research in the compiler and
runtime community. Improving co-location performance is
also an important concern in HPC centers to improve both
energy efficiency and overall throughput [9, 10].

The focus of this work lies on managing parallelism for co-
located parallel applications to fully utilize system resources
and therefore to achieve an increased co-location perfor-
mance (i.e. reduction of the total execution time) for shared-
memory multiprocessor systems consisting of multiple CPU
sockets and memory controllers with Non-Uniform Mem-
ory Accesses (NUMA) latencies. Such multi-socket multi-
core architectures are the standard for high-end shared-
memory platforms. Existing work typically assigns more
worker threads to computation-intensive applications [14,
35, 41, 42]. This can lead to under-utilized memory systems
resulting in inefficient tail execution once the computation-
intensive applications have finished. In contrast, the method
proposed in this paper aims at maximizing the overall utiliza-
tion of both the CPU cores and the memory system. Several
runtime systems manage application parallelism based on
machine learning models [16, 27]. While these approaches
can also react to varying optimization goals [16], their per-
formance depends on the quality and the amount of trained
data. Here, on the other hand, we provide an analytical so-
lution that allows us to understand performance with an
analytical model based on queueing theory.

We present NuPoCo, a framework for NUMA multi-core
Performance Optimization of CO-located parallel applica-
tions. NuPoCo maximizes the overall system utilization by
considering the utilization of both CPU cores and memory
controllers to determine the proper number of threads for
each co-located applications. A dynamic spatial scheduling

https://doi.org/10.1145/3243176.3243199
https://doi.org/10.1145/3243176.3243199

PACT ’18, November 1–4,2018, Limassol, Cyprus Y. Cho, C. A. C. Guzman, and B. Egger

Operating system

Parallel runtime

Application

Parallelism manager

Cooperative
work scheduler

Allocated cores

Parallel runtime

Application

Cooperative
work scheduler

Allocated cores

Selecting
thread counts

Thread placement

Performance model

Figure 1: The NuPoCo framework.
approach is employed that allows only one active thread on
each core to reduce the performance interference caused by
thread oversubscription [6, 20, 29, 49].
Figure 1 depicts the structure of the NuPoCo framework.

The three core components are (1) a performance model,
(2) a parallelism manager, and (3) cooperative work sched-
ulers of parallel runtime systems. The performance model
predicts the utilization of CPU cores and memory controllers
for co-located parallel applications. The parallelism manager
periodically performs core allocation (i.e., deciding on the
number of threads per application and their location) by
leveraging the performance model and monitoring hardware
performance counters. The cooperative work schedulers,
finally, dynamically adapt their execution to the core alloca-
tion dictated by the parallelism manager.

NuPoCo’s parallelism management maximizes the utiliza-
tion of CPU cores and memory controllers. Section 2 first
introduces related research and existing policies to determine
thread counts for co-located applications. Section 3 provides
an evaluation based on queueing theory that demonstrates
the benefits of our strategy compared to existing approaches.
Predicting utilization is based on a queueing system that

models memory accesses on multi-socket multi-core sys-
tems. The performance model leverages standard hardware
performance counters present in commodity AMD and In-
tel platforms; Section 4 describes this performance model.
Based on the performance prediction, the parallelism man-
ager determines the number of threads assigned to individual
co-located applications and periodically revisits the place-
ment of the threads. The techniques used in the parallelism
manager are explained in Section 5. The cooperative work
scheduling is implemented in the dynamic loop scheduler
of the GNU OpenMP runtime and allows applications to
react to a changing number of worker threads at runtime.
Section 6 introduces the cooperative parallel runtime.
Section 7 evaluates NuPoCo on two multi-socket multi-

core platforms, a 64-core AMD Opteron [4] and a 72-core
Intel Xeon [25] platform. Experimental results for various
workload mixes obtained from NPB [5], Parsec [7], and Ro-
dinia [11] show that NuPoCo is able to execute multiple

OpenMP applications in significantly less total execution
time compared to the default Linux scheduler and a paral-
lelism management scheme maximizing CPU utilization.
To summarize, the contributions of this paper are

• an analytical analysis demonstrating that maximizing
overall utilization of all memory controllers and CPU
cores is beneficial for co-located parallel workloads.
• a parallelism management technique that maximizes
resource utilization in multi-socket systems with a
combination of online performance prediction and par-
allel runtime system support.
• NuPoCo, a parallelism manager, that improves the av-
erage system throughput on commodity multi-socket
systems in the order of 10 to 20%.

2 RELATEDWORK
2.1 Parallelism Management
Managing parallelism for parallel applications has been an
important issue in the runtime community. To determine
the proper thread or core count for parallel applications,
SBMP [42], SCAF [14], and Varuna [44] execute a parallel
program in several configurations at runtime and perform a
regression analysis to estimate the performance scalability.
Parcae [38] and C3PO [41] perform hill-climbing to reach an
optimal thread count. CRUST [21] manages an application’s
working set size (and thread count) in dependence of the
available cache size. Emani et al. [16] and ADAPT [27] apply
machine learning models to compute the number of threads
assigned to applications.
Several policies have been proposed to assign the proper

number of threads to co-allocated applications. SCAF [14]
maximizes the speedup of all running applications. SBMP [42]
minimizes the average normalized turnaround time (the exe-
cution time compared to a solo-run) of applications. C3PO [41]
maximizes the CPU utilization within a given power budget.
All these approaches favor scalable applications; if there is a
perfectly scalable application, the majority of core resources
is allocated to that application and other applications receive
zero or one core. Parcae [38] initially reserves an equal num-
ber of cores to all running parallel applications. Applications
find the optimal number of threads through hill-climbing.
Cho et al. [13] use a simple but inaccurate analytical model
to determine the best thread count for each application.

NuPoCo focuses on maximizing overall system utilization
of all CPU cores and memory controllers. Thread placement
is known to strongly affect performance on multi-socket
systems [15, 50]. While previous work does not consider
thread placement or uses simplistic linear partitioning [41,
42], NuPoCo considers the architecture’s NUMA properties
to determine a good placement of threads to cores.

Maximizing System Utilization via Parallelism Management PACT ’18, November 1–4,2018, Limassol, Cyprus

2.2 Cooperative Parallel Runtimes
Another important issue is changing the applications’ paral-
lelism in response to a varying core assignment. SBMP [42]
and C3PO [41] regulate only the number of assigned cores
per application. Worker threads are pinned to the assigned
cores without changing the degree of parallelism of the ap-
plication. On the other hand, several runtime systems [14, 16,
18] assign a varying number of threads to parallel sections.
OpenMP runtime systems [1] already provide this feature.
Once created, however, the number of worker threads within
a parallel section remains constant. To provide dynamic spa-
tial scheduling, several compilers [28, 37, 38] generate flexi-
ble code. The basic idea is to divide the total work into com-
posable chunks of work. Varuna’s [44] virtual tasks decouple
software from hardware threads and require no compiler
support. Callisto [20] is a framework for cooperative parallel
runtimes. Callisto uses a scheduler activation technique for
providing dynamic spatial scheduling while reducing the
performance interference. The framework assigns an equal
number of threads to each co-located application.

Similarly, NuPoCo provides dynamic spatial scheduling by
leveraging a dynamic loop scheduler in the OpenMP runtime
system. We discuss the merits of our approach in Section 6.

2.3 Thread and Data Placement
Anumber of thread and data placement techniques have been
presented for multi-threaded applications on multi-socket
systems [15, 32, 45, 50]. Threads are placed in order to mini-
mize resource contention while preserving an efficient data
placement. Lozi et al. [30] resolved several performance bugs
in multi-socket systems by improving the Linux scheduler.
Pandia [17] predicts performance of parallel applications for
different thread placements based on several profiling runs.

Unlike these approaches, we focus on assigning the proper
number of threads for parallel applications at runtime.

3 BACKGROUND AND MOTIVATION
3.1 Multi-socket Multi-core Systems
Figure 2 provides a simplified view of symmetric multipro-
cessing (SMP) and multi-socket multi-core systems. Unlike
an SMP system that comprises multiple cores and one mem-
ory, multi-socket systems contain a number of memory con-
trollers to increase the memory bandwidth in the presence of
a large number of cores. In such systems, one node consists
of a CPU node, itself composed of a group of CPU cores,
and its attached memory node. The individual nodes are con-
nected by an interconnection network such as AMD’s Hyper-
Transport [40] or Intel’s QPI (Quick Path Interconnect) [36].
These architectures exhibit Non-Uniform Memory Accesses
(NUMA) characteristics because of the varying access laten-
cies of the cores to the different memory controllers.

 MCT
(memory
controller)

M E M

Chip
multiprocessor

(a) SMP system (b) Multi-socket multi-core system
Figure 2: SMP and multi-socket multi-core systems.

3.2 Parallel workloads
NuPoCo maximizes system utilization by controlling the
degree of parallelism (DoP) of co-located applications dur-
ing execution of fork-join-style parallel sections such as the
parallel for construct in OpenMP [8] or Intel TBB [39]
workloads. The DoP is controlled using malleable workloads
that allow dynamic adjustment of the number of threads
for each parallel section. For non-malleable workloads, the
threads of a parallel section can be pinned to the assigned
hardware cores [41, 42].
The presented parallelism management scheme is based

on the resource utilization of the CPU cores and the mem-
ory controllers. To predict the resource utilization, a queue-
ing model is employed where the CPU cores are consid-
ered queueing customers and the memory controllers are
regarded as queueing servers. The queuing model requires
the requests from the customers to follow an exponential dis-
tribution and assumes that memory request are blocking, i.e.,
the issuing core is blocked and does not generate any new
requests until the request has been served by the memory
controller in a First-In-First-Out (FIFO) order. Several stud-
ies have shown that the memory requests of parallel loops
follow an exponential distribution on real multiprocessor
platforms and that performance can be modeled using queue-
ing models [12, 47, 48]. The spatial scheduling approach of
NuPoCo allows us to ignore the effect of interference on per-
formance caused by scheduling two or more threads from
different workloads on a single hardware core.

3.3 Modeling Performance Metrics
Queueing models are able to compute important perfor-
mance-related metrics such as the CPU utilization or the
memory controller utilization. Let us first consider a simple
SMP system with one memory controller (MCT) and 16 cores
as shown in Figure 2 (a). Such a system can be modeled using
an M/M/1/N/N queueing system [46] with a finite number of
N customers and 1 server;M stands for Markovian. Details
about queuing models can be found in [26, 46].

PACT ’18, November 1–4,2018, Limassol, Cyprus Y. Cho, C. A. C. Guzman, and B. Egger

Queueing customers (N)

λ λ λ λ

Queueing
server (1)µ

Waiting
line (N)

Param. Description
λ Mean arrival rate
µ Mean service rate
N Number of customers
r Mean response time
Us Server utilization

Computing r from λ, µ, and N

r = 1
µ (

N
Us −

µ
λ)

Us = 1 − (
∑N
k=0

N !
(N−k)! (

λ
µ)

k)−1

Figure 3: TheM/M/1/N/N queueingmodel. Themean ar-
rival rate λ and themean service rate µ refer to the number of
requests from a customer and the number of requests served
by the server, respectively, per time unit in the steady state.

Figure 3 shows the M/M/1/N/N queueing model and its
closed-form expression to compute the mean response time
of the server. The N queueing customers (the cores) each
generate requests with a mean arrival rate λ following a
Poisson distribution that are served by one queueing server
(the memory controller) with a mean service rate µ with
exponential service times.
Based on this queueing model, the speedup, the per-core

utilization, and the MCT utilization in dependence of the
number of allocated cores can be derived as follows. The
Speedup of a program is defined by dividing the execution
time on one core, Total Time(1), by the execution time on N
cores, Total Time(N)

Speedup (N) = Total Time (1)/Total Time (N) (1)

Under the assumption that cores block on outstanding mem-
ory requests, Total Time(N) is composed of the execution
time on N cores, CPU Time(N), and the total memory re-
sponse time, MCT Time(N)

Total Time (N) = CPU Time (N) +MCT Time (N)

For data-parallel workloads where the total amount of work
is constant and balanced, the execution time on N cores is
given by

CPU Time (N) = CPU Time (1)/N

The estimated number of generated memory requests for
N cores is the product of the CPU time and the per-core
memory request rate, MRR. MCT Time(N) is obtained by
multiplying MRR with the mean memory response time for
N cores, MRT(N).

MCT Time (N) = CPU Time (N) ×MRR ×MRT (N) (2)

Each application has its own MRR value, and the MRT for a
varying number of cores is regarded as the scaling factor of
the parallel application.

 0

 0.5

 1

 1.5

 2

2 4 6 8 10 12 14 16

 4

 8

 12

 16

U
ti

li
za

ti
o
n S

p
eed

u
p

allocated cores

per-core util.
MCT util.

system util.
speedup

(a) Workload A (MRR = 0.0)

 0

 0.5

 1

 1.5

 2

2 4 6 8 10 12 14 16

 4

 8

 12

 16

U
ti

li
za

ti
o
n S

p
eed

u
p

allocated cores

per-core util.
MCT util.

system util.
speedup

(b) Workload B (MRR = 0.01)

Figure 4: Performancemetrics for twoworkloads with
different MRRs at amean service rate µ of 50.

For a memory controller with a service rate µ, the mean
memory response time is given by (refer to Figure 3)

MRT (N) =
1
µ

(
N

MCT Util (N)
−

µ

MRR

)
(3)

whereMCTUtil(N) denotes thememory controller utilization
corresponding to the server utilizationUs from Figure 3

MCT Util(N) = 1 −

(
N∑
k=0

N !
(N − k)!

(
MRR
µ
)k

)−1
(4)

Finally, the per-core utilization, CPU Util(N), is defined by
the ratio of CPU time over the total time

CPU Util (N) =
CPU Time (N)
Total Time (N)

(5)

To consider overall utilization of both the CPU and the mem-
ory controller, we suggest a new metric, the system utiliza-
tion, defined as the sum of CPU and MCT utilization. For an
application using N of the totalM system cores, the system
utilization, System Util(N), is defined as

System Util (N) = CPU Util (N) ×
N

M
+MCT Util (N) (6)

To solve this model for co-located applications, the weighted
average of the workloads’MRR of all assigned cores is used to
compute the mean memory response time and the memory
controller utilization (Equations 3 and 4). Based on the com-
puted MRT value, we compute the per-application Speedup
and CPU Util using the application-specific MRR value.

3.4 Performance Analysis
Figure 4 plots the analytical results of the presented model
for the four metrics Speedup, MCT Util, CPU Util, and Sys-
tem Util for two workloads and a varying number of cores.
The results show that the completely CPU-bound workload
A is able to fully utilize the given CPU resources, but its
MCT Util is 0. For workload B with a memory request rate
MRR = 0.01, CPU Util decreases with an increasing number
of cores while MCT Util increases. Looking at System Util,
the system utilization of workload B is always higher than

Maximizing System Utilization via Parallelism Management PACT ’18, November 1–4,2018, Limassol, Cyprus

 0
 5

 10
 15
 20
 25
 30
 35
 40

B
at

ch

[1
-1

5
]

[2
-1

4
]

[3
-1

3
]

[4
-1

2
]

[5
-1

1
]

[6
-1

0
]

[7
-9

]

[8
-8

]

[9
-7

]

[1
0
-6

]

[1
1
-5

]

[1
2
-4

]

[1
3
-3

]

[1
4
-2

]

[1
5
-1

]T
u
rn

ar
o
u
n
d
 t

im
e

[a-b]: core count ‘a’ for Workload A and ‘b’ for B

Workload A Workload B

E
q
u
al

p
ar

ti
ti

o
n

M
ax

 s
y
s.

u
ti

li
za

ti
o
n

M
ax

 C
P

U
u
ti

li
za

ti
o
n

(a) A = 100, B = 100.

 0
 10
 20
 30
 40
 50
 60

B
at

ch

[1
-1

5
]

[2
-1

4
]

[3
-1

3
]

[4
-1

2
]

[5
-1

1
]

[6
-1

0
]

[7
-9

]

[8
-8

]

[9
-7

]

[1
0
-6

]

[1
1
-5

]

[1
2
-4

]

[1
3
-3

]

[1
4
-2

]

[1
5
-1

]T
u
rn

ar
o
u
n
d
 t

im
e

[a-b]: core count ‘a’ for Workload A and ‘b’ for B

Workload A Workload B

E
q
u
al

p
ar

ti
ti

o
n

M
ax

 s
y
s.

u
ti

li
za

ti
o
n

M
ax

C
P

U
u
ti

l.

(b) A = 400, B = 100.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

B
at

ch

[1
-1

5
]

[2
-1

4
]

[3
-1

3
]

[4
-1

2
]

[5
-1

1
]

[6
-1

0
]

[7
-9

]

[8
-8

]

[9
-7

]

[1
0
-6

]

[1
1
-5

]

[1
2
-4

]

[1
3
-3

]

[1
4
-2

]

[1
5
-1

]T
u
rn

ar
o
u
n
d
 t

im
e

[a-b]: core count ‘a’ for Workload A and ‘b’ for B

Workload A Workload B

E
q
u
al

p
ar

ti
-t

io
n

M
ax

sy
s.

u
ti

l.

M
ax

 C
P

U
u
ti

li
za

ti
o
n

(c) A = 800, B = 100.

Figure 5: Turnaround times of co-located workloads A and B. Both workloads are started at the same time and executed
with the core allocation given in the X-axis. The vertical bars indicate the core distribution yielding the best performance for the
equal partitioning, max system utilization, and max CPU utilization policies, respectively. The line points on the Y-axis indicate
the turnaround time of each workload. Subfigures (a)-(c) differ in the amount of work per workload (metric: turnaround time
when executed in isolation on a single core).

time time
35.851.1

16

11

1

16
15

1

Program A (MRR 0.00) Program B (MRR 0.01)

Max CPU utilization Max system utilization

Batch

time

Equal partitioning

time
41.758.3

16

8

11

16

26.7

33.4

34.6

25.0

co

re
s

co

re
s

co

re
s

co

re
s

Figure 6: Illustration of the performance for the core
allocation policies in Figure 5 (b).

that of workload A. However, System Util of workload B is
saturated at a relatively small number of cores while the
System Util of workload A increases linearly. The insight
of this analytical result is that co-locating workload A with
workload B has the potential to achieve a higher system
utilization.
Using the queueing model, we can simulate co-location

performance based on the speedup value of each workload.
Figure 5 shows the computed total turnaround time of the
co-located workloads for different core allocations and a
varying amount of work on a 16-core SMP system with one
memory controller. Figure 6 visualizes the core allocation
over time for three common and the presented allocation
policies using the workload distribution from Figure 5 (b).

The first policy, Batch, executes theworkloads sequentially.
Equal partitioning executes the two workloads in parallel,
assigning the same number of cores to both. The policy Max
CPU utilization finds the core allocation that maximizes the
total CPU utilization. We observe thatMax CPU utilization al-
locates 15 cores to the perfectly scalable workload A and only
the minimum of one core to workload B. The proposed Max
system utilization policy, finally, maximizes the System Util
as defined by Equation 6.Max system utilization achieves the

shortest total turnaround time of the four policies, demon-
strating that focusing only on CPU utilization may not lead
to optimal results.
In Figure 6, the Max system utilization policy yields the

best turnaround time among all possible core allocations
with a 40% of reduction compared to the Batch configuration.
For Max CPU utilization, after workload A has ended, the
execution of workload B policy experiences an inefficient
tail execution caused by congestion in the memory system.
It is also important to note that the optimal partitioning
minimizing the total turnaround time depends on the amount
of work of the co-located applications. While both workloads
end around the same time with Max system utilization in
Figure 5 (b), yielding the best possible turnaround with a
core allocation of 11:5 cores assigned to workload A and
B, respectively, this is not the case for Figures 5 (a) and (c).
For (a), the best distribution is 6:10 cores, and for (c) it is
14:2. The total turnaround time of theMax system utilization
policy, however, achieves comparable performance to the
best distribution and in all situations performs better than
Max CPU utilization.

3.5 The NuPoCo Policy
The analysis in this section suggests that for co-located par-
allel applications, maximizing the transient overall system
utilization is beneficial if the workloads’ size is unknown.
Without special provisions, the total execution time of a
parallel section is typically not known in advance.

In the NuPoCo framework, we aim to maximize the overall
system utilization NuUtil of a multi-socket system. Such
a NUMA system is a group of SMP systems, as shown in
Figure 2 (b). NuUtil is therefore defined as the sum of all
individual nodes’ system utilization:

NuUtil =
num_nodes∑

i=0
System Utili (7)

PACT ’18, November 1–4,2018, Limassol, Cyprus Y. Cho, C. A. C. Guzman, and B. Egger

Shared resource

Queueing server
CPU
node

Memory
controller

DRAM chip

...

Queueing customers

Waiting line

µ = Memory
controller service rate

λ = Per CPU node
memory request rate

L
L
C

CPU
node

L
L
C

CPU
node

L
L
C

Figure 7: Queueing system for an individual memory
controller.

4 ONLINE PERFORMANCE MODEL
Multi-socket systems comprise multiple CPU nodes and
memory controllers (Figure 2 (b)). Based on a queueing sys-
tem network for multi-socket multi-core systems in our prior
work [12], NuPoCo considers the memory controllers and
the interconnection links as separate queueing servers and
predicts the mean memory response time.

4.1 Memory Controller Utilization
To predict the utilization of individual memory controllers,
we model each controller with a queueing system as shown
in Figure 7. Amemory controller serves the memory requests
issued by the last-level caches (LLC) of the individual CPU
nodes. For the queueing system of memory controllerm, let
Ncpu_node be the number of CPU nodes and MRR cpu_node

i,m
represent the memory request rate from CPU node i to mem-
ory nodem. The mean request arrival rate at memory con-
trollerm,MRR cpu_node

avд,m , is the average of the individual CPU
nodes’ request rates

MRR cpu_node
avд,m =

∑Ncpu_node
i=0 MRR cpu_node

i,m

Ncpu_node

With the average memory request rate MRR cpu_node
avд,m and

the memory service rate µm for a memory controllerm, we
can compute the memory controller utilization MCT Utilm
and the mean response time MRTm using Equations 4 and 3
from Section 3.3, respectively. The value of MRTm is used to
compute the CPU core utilization in the section below.

4.2 CPU Core Utilization
To compute the CPU core utilization of a CPU node, we first
need to calculate the memory request time to each memory
controller. To do so, the queueing system depicted in Figure 8
is employed. This queue models the serialization of outgo-
ing memory requests from the node’s LLC to one memory
controller. Outgoing memory requests include missed read
and write operations and hardware prefetch requests.

Shared resource

Queueing customers

Waiting line

Memory
controller

DRAM chip

Queueing
server

Interconnect

µ = Service rate of
interconnection link and

memory controller

λ = Per CPU core
memory request rate

CPU node

CPU
core

...

CPU
core

CPU
core

LLC

hit miss

Figure 8: Queueing system for CPU core utilization
prediction.

With Ncores_in_node representing the number of cores in
CPU node i accessing memory nodem, the average memory
request rate MRRcpu_coreavд,m is estimated as follows

MRR cpu_core
avд,m =

∑Ncores_in_node
j=0 MRR cpu_core

j,m

Ncores_in_node

The service rate includes the service rate of the intercon-
nection link, linki,m , from CPU node i to memory nodem,
and the mean response time of the memory node (MRTm) as
obtained in Section 4.1. The service rate µi,m is given by

µi,m =
1

1/linki,m +MRTm

WithMRR cpu_core
avд,m and µi,m , the total meanmemory response

time from CPU node i to memory nodem, MRT i,m , is com-
puted from Equation 3.

The total memory response time for a core is obtained ac-
cording to Equation 2. While all outgoing memory requests
of an LLC affect the mean memory response time, only re-
quests caused by read misses stall a core and thus affect the
CPU core utilization. We estimate the rate of outgoing read
requests from every core to each memory node using the per-
core number of LLC read requests per time1. For the cores in
CPU node i with an LLC read request rate to memory node
m, LLC r ead

i,m , the total memory response time is computed by

MCT Time =
∑
m∈M

CPU Time × LLC r ead
i,m ×MRTi,m

Based on the ratio between CPU Time and MCT Time, we
can compute the CPU utilization using Equation 5.

4.3 Implementation and Validation
The required inputs for the performance model are obtained
from the hardware performance monitoring unit. We mea-
sure LLC accesses, LLC misses, all memory requests that af-
fect memory utilization (read, write, prefetch) to all memory
controllers, and the total number of CPU cycles. AMD [2, 3]
and Intel [22–24] systems support all required counters.
1To compute the LLC read request rate per core, we initially allocate only
threads of the same application to the cores in a node, then divide the node’s
LLC read request rate by the number of allocated cores, see Section 5.1.

Maximizing System Utilization via Parallelism Management PACT ’18, November 1–4,2018, Limassol, Cyprus

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

ee
d

u
p

allocated CPU nodes

FT.cffts1(M)
FT.cffts1(P)

FT.cffts2(M)
FT.cffts2(P)

FT.cffts3(M)
FT.cffts3(P)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

ee
d

u
p

allocated CPU nodes

BT.x_solve(M)
BT.x_solve(P)
SP.x_solve(M)
SP.x_solve(P)

SP.rhs1(M)
SP.rhs1(P)

Figure 9: Speedup predictions (P) and measurements
(M) of several parallel loops from FT and SP (NPB) [5]
on a 64-core AMD Opteron system.

The application-specific parameters MRR cpu_core
i,m ,

MRR cpu_node
i,m , and LLC r ead

i,m are computed at runtime with-
out depending on offline information. A direct measurement
of the the per-core LLC accesses and misses is not supported
by the hardware. NuPoCo gets around this limitation by
initially allocating only threads of one application to the
cores in one CPU node, then divide the node’s LLC accesses
and misses by the number of cores. This happens once for
each parallel section during a one-time brief online profiling
phase (see Section 5.1). The machine-dependent parameters
µmct and linki,m are determined by executing a synthetic
workload from the Stream benchmark [34] that generates
memory accesses from one core to specific memory nodes
and measures the mean memory service time. This process
is required only once for a given hardware platform.
Figure 9 compares the predicted with the actual speedup

for several parallel loops from an NPB implementation [43].
The results show that the performance model can capture the
trend of the speedup. Since the speedup is computed from
the predicted CPU core utilization (Equation 1), this result
confirms that predictions of resource utilization are also
possible with the presented model. An extensive analysis for
other (co-located) NPB parallel loops on a 64-core AMD and
a 72-core Intel system shows that the performance model
predicts the speedup with moderate absolute percentage
errors of 10-15%, similar to the results in the prior work [12].

5 MANAGING PARALLELISM
The degree of parallelism and the core assignment of co-
located applications is managed at runtime by NuPoCo.

First time
Online profiling

DoP computation

Thread placement

A parallel
loop begins

A parallel
loop ends

Otherwise

NuPoCo’s parallelism manager is activated whenever a
parallel loop begins or ends. It performs the following three
steps: online profiling,DoP computation, and thread placement.
When a parallel loop is executed for the first time, the online

Algorithm 1 DoP computation
1: for each cpu_node ∈ system do
2: util_list = []
3: for eachwl ∈ runninд workloads do
4: cpu_node .allocate(wl)
5: NuUtil ← per f ormanceModelinд()
6: util_list .append(NuUtil)
7: cpu_node .deallocate(wl)
8: best_wl ← bestExpectedNuUtil(util_list)
9: for each cpu_core ∈ cpu_node do
10: cpu_core .allocate(best_wl)
11: Communicate core allocation to parallel runtimes

profiling phase is initiated that profiles the new parallel loop
for a short period of time; profiling is skipped for the second
and later invocations of the same loop. The DoP computa-
tion step uses the queueing systems presented in Section 4
to compute a thread allocation that maximizes the overall
system utilization. Once the thread count for each co-located
application has been determined, the thread placement phase
begins during which individual threads of an application are
relocated if opportunities exist to improve performance.

5.1 Online Profiling
During online profiling, all cores of the system are assigned
to the new parallel section for a short period of time. This
serves two purposes. First, it ensures that the data of an ap-
plication is distributed in a similar manner as in a standalone
execution under a NUMA first-touch allocation policy. Sec-
ond, it allows NuPoCo to infer the LLC miss rate per core by
measuring the node’s LLC rate and divide it by the number of
cores in the node. This initial profiling period is set to 150ms;
long enough to ignore cache warming effects and sufficently
short not to affect other running applications much.

5.2 DoP Computation
The goal of this step is to maximize system utilization by
allocating the proper thread counts for running parallel ap-
plications. Algorithm 1 shows how the parallelism manager
determines the degree of parallelism for each application.
The number of cores per workload is determined in a greedy
manner. The basic allocation unit in this stage is a CPU node.
Starting with an empty allocation, each CPU node in the
system (line 1) is assigned in turn to the application (lines
9–11) that is expected to yield the best overall system utiliza-
tion NuUtil (Section 3.5) (lines 5–8). The prediction of the
system utilization NuUtil (line 6) is based on the performance
prediction model from Section 4.

The number of CPU nodes is assumed to be larger than the
number of co-located applications. At least one CPU node
is allocated to each application executing a parallel section.
Applications in serial sections are assigned a single core.

PACT ’18, November 1–4,2018, Limassol, Cyprus Y. Cho, C. A. C. Guzman, and B. Egger

Algorithm 2 Thread placement
1: Initialize cpu_node_list in descending order of LLC ac-

cesses since the last invocation
2: repeat
3: busy_nd ← cpu_node_list .pop_f ront()
4: idle_nd ← cpu_node_list .pop_back()
5: if busy_nd .l lc_accesses()

idle_nd .l lc_accesses() > threshold then
6: busy_wl ← busy_nd .max_llc_miss_rate()
7: idle_wl ← idle_nd .min_llc_accesses()
8: SwapCores(busy_wl , idle_wl)
9: until cpu_node_list is empty
10: Communicate core allocation to parallel runtimes

5.3 Thread Placement
The DoP computation assigns all core resources of a CPU
node, i.e., cores sharing the same LLC (Section 3.1), to one
application. This leaves room for additional performance
improvements. Individual threads of memory-intensive ap-
plications may require substantial LLC resources. If allocated
to the same CPU node, thus sharing the same LLC, this may
lead to contention or, even worse, thrashing in the LLC. CPU-
bound applications, on the other hand, typically contend
less for LLC resources. Co-locating memory-intensive with
CPU-bound workloads in the same CPU node thus has the
potential to yield an improved overall system utilization.

Algorithm 2 outlines the implementation of this idea. The
algorithm is invoked periodically every 50ms after Algo-
rithm 1 has ended. It repeatedly retrieves the CPU nodes that
exhibit the highest (busy_nd) and lowest (idle_nd) number of
LLC accesses since the last iteration (lines 3–4). If the ratio
of LLC accesses exceeds a given threshold (currently set to 2;
line 5), we select the workload that observed the highest LLC
miss rate from busy_nd (line 6) and the one with the lowest
number of LLC accesses from idle_node (line 7), based on
the information inferred during online profiling (Section 5.1).
The algorithm then swaps the location of a number of cores
(NuPoCo exchanges two cores by default) of the two applica-
tions (line 8). This process is repeated until the list is empty
(line 9). Although this thread placement technique is a hill-
climbing method, it quickly reaches a steady state as later
demonstrated in Section 7 and Figure 13.

6 COOPERATIVE OPENMP RUNTIME
The last core component of the NuPoCo framework are co-
operative parallel runtimes that provide dynamic spatial
scheduling. We have implemented dynamic spacial sched-
uling into the GNU OpenMP runtime [1] by adding a new
loop scheduling method denoted cooperative. The NuPoCo
parallelism manager keeps track of the execution of OpenMP
applications by intercepting calls that initiate or terminate

Algorithm 3 Cooperative worker threads
1: while there is more work do
2: if own core is not available then
3: go to sleep
4: for each thread ∈ worker_threads do
5: if thread’s core is available then
6: wake up thread
7: work_chunk ← дet_work_chunk(chunk_size)
8: if work_chunk received then
9: work_chunk → execute()
10: if id == 0 and elapsed_time < epoch then
11: chunk_size ← (chunk_size × 2)

parallel loops. The results of the core allocation are com-
municated to the OpenMP parallel runtimes through shared
memory. The runtimes dynamically change the DoP of co-
operative parallel loops by adjusting the number of worker
threads and pinning them to the assigned cores.

6.1 Cooperative Loop Scheduling
The OpenMP runtime contains three schedulers, static, dy-
namic, and guided. In dynamic scheduling, all worker threads
iteratively acquire and process a chunk of the total work
based on a work-sharing model. The implementation of the
cooperative scheduler leverages the dynamic scheduler. Al-
gorithm 3 shows how the worker threads are executed by
the cooperative scheduler. Before requesting new work, each
thread checks the availability of its core. If the core is no
longer available, the thread goes to sleep (lines 2–3). Active
worker threads review the current core allocation and wake
up threads whose core has become available (lines 5–6).

Each thread acquires a chunk of work by calling the get_
work_chunk function on line 7. To decrease the dispatch
overhead, the master thread (id 0) dynamically adjusts the
work chunk size based on the elapsed execution time of a
work chunk (lines 12–13). Furthermore, to preserve data
locality optimizations of applications, we partition the work
items into multiple regions for each CPU node. Then, a local
work queue distributes work to the threads in that node. The
regions are equally partitioned according to OpenMP’s static
scheduling policy. Such a partitioning can be effective when
neighboring work items exhibit high locality and preserve
manual optimizations for static scheduling with a technique
such as [33]. Load balancing is also achieved through work
stealing from the local queues of other CPU nodes.
A concern is whether, despite its flexibility, the perfor-

mance of the cooperative loop scheduler is on par with the
existing schedulers. Figure 10 shows the turnaround times
of standalone applications executed with different OpenMP
schedulers. Static-optimized uses static work partitioning
and considers NUMA locality for the data allocation. In the
absence of workload imbalance, this approach achieves the

Maximizing System Utilization via Parallelism Management PACT ’18, November 1–4,2018, Limassol, Cyprus

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

EP FT BT SP

N
o
rm

a
li

z
e
d
 e

x
e
c
u
ti

o
n
 t

im
e

(a) 64-core AMD system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

EP FT BT SP

Static-optimized
Guided

Dynamic
Cooperative

(b) 72-core Intel system.
Figure 10: Normalized execution time of NPB [5] ap-
plications under different loop schedulers.

best possible performance because no scheduling overhead
is incurred. We observe that dynamic and guided scheduling
perform worse than static because of scheduling overhead
and the unawareness of data locality. The presented cooper-
ative work scheduling combines the best of both worlds by
respecting data locality, yet being able to react to workload
imbalance while also supporting malleable parallelism.

7 EVALUATION
7.1 Experimental Platforms
We evaluate NuPoCo on a 64-core (8-node) AMD Opteron
platform and a 72-core (4-node) Intel Xeon platform. The
AMD Opteron [4] processors and Intel Xeon E7-8870 v3
processors [25] run at 2.5GHz and 2.1GHz frequency, re-
spectively. The AMD and Intel platforms are equipped with
128GB and 756GB of DRAMmemory, respectively. TheDRAM
chips operate at 1.6GHz in both system. The Linux kernel
versions are 4.4.35 for AMD and 4.4.0 for the Intel platform.
We use a modified version of OpenMP v5.4.0 [1] with the
cooperative loop scheduler (Section 6).

7.2 Target Applications
For the co-lcoation scenarios, we utilize target applications
from NPB [5], Parsec [7], and Rodinia [11] (Table 1). NPB
applications represent HPC workloads that require large
amounts of memory and/or lots of computational resources.
We selected BT, FT, SP, and EP from an OpenMP NPB imple-
mentation [43]. BT, FT, and SP are both CPU- and memory-
intensive workloads. The data set of FT and SP is very large.
We categorize these three applications as Type-A to repre-
sent applications that require a significant amount of system
resources. On the other hand, EP is an almost perfectly scal-
able kernel that rarely accesses memory. We classify EP as
Type-B, a class that extremely under-utilizes the memory
system. The four NPB applications use input class D with a
large problem size. The number of iteration steps is adjusted
to obtain standalone turnaround times that are similar to
those of the other applications.
Parsec’s blackscholes (BS) consists of long serial sections

and one parallel loop that does not require a lot of system
resources compared to Type-A applications. BS is executed

App
Resource requirement

CPU Memory Data size Type
BT High Medium Medium A
FT High High Huge A
SP High High Huge A
EP High Almost none Almost none B
KM Low Medium Small C
BS Low Low Small C

Table 1: Target applications.
with the native input data set. kmeans (KM) from the Ro-
dinia benchmark is executed with 3,000,000 objects and rep-
resents a non-scalable application with frequent synchroniza-
tion between cores and a long serial section at the beginning
of its execution. KM under-utilizes CPU resources. These
two applications are classified as Type-C, representing ap-
plications that under-utilize CPU resources.

7.3 Execution Modes
The presented approach is compared with the following
execution modes:
• Batch. Applications are executed serially. The number
of threads is equal to the number of system cores, each
thread is pinned to a core 2.
• Native.Applications generate asmany threads as there
are cores in the system and are co-located by the Linux
scheduler. Thread binding is disabled to allow the
Linux scheduler to perform thread and data placement.
• Equal. This policy assigns the same number of cores
to all running parallel sections and a single core to a
serial process. The cores are allocated linearly.
• Scalability. This core allocator is based on a CPU
scalability-based approach. We have implemented the
hill-climbing algorithm proposed in C3PO [41]. The
algorithm changes the number of assigned cores to the
applications based on the measured CPU utilization.
• NuPoCo Greedy. To demonstrate the effect of the
thread placement technique (Section 5.3), this policy
performs only DoP computation (Section 5.2).
• NuPoCo Our proposal.

With Batch and Native, loops are scheduled statically as
this yields the best performance among all available OpenMP
loop schedulers on our platforms. For Equal, Scalability,
NuPoCo Greedy, and NuPoCo, we use the cooperative
work scheduler presented in Section 6.1 to provide dynamic
spatial scheduling. NuPoCo is executed with the following
parameters: the initial profiling phase is 150ms (Section 5.1).
The thread placement algorithm (Algorithm 2) is invoked
every 50ms and uses a threshold value of 2 for core swapping.
2On our platforms, thread binding performs better in standalone execution,
but worse in co-located executions.

PACT ’18, November 1–4,2018, Limassol, Cyprus Y. Cho, C. A. C. Guzman, and B. Egger

Co-location type Co-located workloads

Mix of Type-A
(1) BT, FT (2) BT, SP

(3) FT, SP (4) BT, FT, SP

Mix of Type-A and B
(5) BT, FT, EP (6) BT, SP, EP
(6) BT, SP, EP (7) FT, SP, EP

Mix of Type-A and C (8) BT, KM (9) FT, KM (10) SP, KM

Table 2: Co-location scenarios.

To measure the co-location performance, we consider the
total execution time from start to finish of all co-located ap-
plications. Each scheduler is evaluated using the normalized
total turnaround time (NTT) with regards toNative. We also
report the speedup relative to the harmonic mean (Hmean)
which is known as a speedup metric that also considers the
fairness of co-located jobs [31]. All results are obtained by
executing each scenario three times and taking the average.

7.4 Co-location Scenarios
We consider various co-location scenarios as follows. First,
two Type-A applications that require substantial system re-
sources are co-located. To see the performance behavior
for different types of applications, the Type-B (EP) and the
Type-C (KM) application are co-located with several Type-A
applications. Details of each scenario are given in Table 2.
Figure 11 shows the NTT of the six execution modes

Batch, Native, Equal, Scalability, NuPoCo Greedy, and
NuPoCo on the AMD and the Intel system for ten different
scenarios. All co-located applications are started at the same
time but finish at different points in time.
The results show that, on average, NuPoCo achieves the

best system throughput among the six core allocation con-
figurations on both platforms. Under the geometric mean,
NuPoCo achieves an NTT of 0.91 (9% improvement) on the
AMD system and 0.81 (19% improvement) on the Intel plat-
form over the Linux scheduler. The performance improve-
ment with NuPoCo is up to 20% on the AMD platform (sce-
nario 4) and 35% on the Intel system (scenario 10). NuPoCo
also does not report any performance degradation for the ten
scenarios. The average job turnaround time of co-located ap-
plications with NuPoCo is 10.8% and 12.3% shorter than that
of Native for the AMD and the Intel platform, respectively.

Scenarios 1–4 mix two to three Type-A applications caus-
ing high competition for platform resources. We observe that
the Batch configuration is a suitable choice for scenarios 1–4
as they utilize the platform’s CPU core and memory systems
well and show good scalability. Native can not efficiently
execute these scenarios (especially scenario 3) compared to
Batch or NuPoCo because it suffers from a high resource in-
terference as all of the applications have a high degree of
resource demands. For scenarios 1–3, NuPoCo shows almost

Batch
Native

Equal
Scalability

NuPoCo Greedy
NuPoCo

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
T
T

64-core AMD platform
1.59 2.11

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(1)B
T+FT

(2)B
T+SP

(3)FT+SP

(4)B
T+FT+SP

(5)B
T+FT+EP

(6)B
T+SP+EP

(7)FT+SP+EP

(8)B
T+K

M

(9)FT+K
M

(10)SP+K
M

G
eom

ean

N
T
T

72-core Intel platform

Figure 11: Normalized total turnaround (NTT) to
Linux Native for the co-location scenarios.

the same performance as Batch on the AMD/Intel platforms.
For scenario 4, NuPoCo outperforms Batch by 10%. This is
because the three Type-A applications contain serial sections
during which NuPoCo is able dynamically assign more cores
to parallel sections.
To test the effectiveness of the presented methods when

different types of applications are co-located with Type-A,
we execute EP, a (Type-B) application with two applications
from Type-A in scenarios 5–7. We observe that performance
of Batch decreases compared to scenarios 1–3. Since EP puts
no pressure on the memory system, the Batch configuration
suffers from a low utilization when EP is executed standalone.
On the other hand, Native is able to increase resource uti-
lization for co-located EP and Type-A applications compared
to Batch. NuPoCo achieves better performance than the other
schedulers thanks to its online performance predictionmodel
and dynamic thread count adjustment.
For the remaining scenarios 8–10, we co-locate KM with

BT, FT, and SP. KM does not require a lot of CPU resources
because of its long serial sections and the synchronizations,
hence, allocating only a subset of cores to KM is beneficial.
As expected, Batch experiences a significant performance
degradation when executing KM. NuPoCo performs well for
these scenarios, but we observe that on the Intel platform,
the Equal policy performs best for scenarios 8 and 9. A static
core allocation scheme can be beneficial for KM and its short
parallel section that is executed iteratively.
Overall, we observe that the conventional allocation ap-

proach to co-location, Scalability, is not beneficial to im-
prove the system’s throughput. Although CPU utilization
is maximized, co-located applications suffer from memory

Maximizing System Utilization via Parallelism Management PACT ’18, November 1–4,2018, Limassol, Cyprus

Batch
Native

Equal
Scalability

NuPoCo Greedy
NuPoCo

0

0.2

0.4

0.6

0.8

1.0

(1) B
T+FT

(2) B
T+SP

(3) FT+SP

(9) B
T+FT+SP

(7) B
T+EP+FT

(8) B
T+EP+SP

(10) EP+FT+SP

(4) B
T+K

M

(5) FT+K
M

(6) SP+K
M

G
eom

ean

H
m

ea
n

 s
p

ee
d

u
p

64-core AMD platform

0

0.2

0.4

0.6

0.8

1.0

(1)B
T+FT

(2)B
T+SP

(3)FT+SP

(4)B
T+FT+SP

(5)B
T+FT+EP

(6)B
T+SP+EP

(7)FT+SP+EP

(8)B
T+K

M

(9)FT+K
M

(10)SP+K
M

G
eom

ean

H
m

ea
n

 s
p

ee
d

u
p

72-core Intel platform

Figure 12: Hmean of speedup relative to standalone
execution for the co-location scenarios.

contention and a low CPU utilization when scalable appli-
cations finish earlier. Additionally, in scenarios 2, 8, and 10,
Scalability suffers from a severe performance degradation.
A closer inspection reveals that the hill-climbing algorithm
in some cases is oscillating, thus continuously changing the
number of assigned cores. The benefit of the thread place-
ment (Section 5.3) in NuPoCo is visible in comparison with
NuPoCo Greedy. Despite the additional runtime overhead,
proper thread placement is beneficial in general.

In terms of theHmean speedup shown in Figure 12, NuPoCo
outperforms Native by 13.2% and 10.8% on the AMD and
Intel platforms, respectively. The results show that fairness
is not only preserved but improved with NuPoCo. The Linux
scheduler often favors specific workloads resulting in a slow
performance for other applications. This is also visible in
Figure 13. Batch achieves a relatively good Hmean speedup
because the first job in Batch is always assigned the optimal
value.

To summarize, the results show that NuPoCo performs
well for a diverse mix of applications, especially when the
co-located applications exhibit different performance charac-
teristics. If the co-locatedworkloads exhibit similar character-
istics, NuPoCo consistently provides good performance com-
parable to the best system configuration (Batch or Native).

7.5 Case-Study and Overhead Analysis
To better understand and demonstrate NuPoCo’s operation,
three application types, FT (Type-A), EP (Type-B), and BS
(Type-C) are co-located. Using the open-source trace visual-
izer SnuMAP [19], Figure 13 visualizes the core allocations
over the course of execution on the 64-core AMD platform.

8
16
24
32
40

48
56
64
cores EP FT blackscholes (BS)

tt1 t2

N
at
iv
e

N
u
P
oC
o

8
16
24
32
40

48
56
64

EP
starts

FT
starts

BS
starts

EP
ends

FT
ends

BS
ends

EP & FT
ends

BS
ends

Figure 13: Trace visualization for a co-location under
Native and NuPoCo on the AMD machine.

In this scenario, each application starts at a different time.
EP is started first and monopolizes the core resources. FT
joins a bit later and starts its first parallel section at t1 with
the clean-profiling phase. NuPoCo then performs the DoP
computation followed by the thread placement technique for
EP and FT. We observe that the profiling stage in NuPoCo is
almost invisible, and the core allocations quickly converges
to the steady state (t1–t2). The different core allocations in-
dicate that NuPoCo differentiates between multiple parallel
sections in FT. Once BS is started, it uses only one core for its
initial long serial section until BS reaches the main parallel
section. Over the entire execution with a scheduling epoch
of 50ms, in total 32 thread count selections and 1, 627 thread
placements have been executed with an average computa-
tional overhead of 1.8ms and 1.5ms. Since NuPoCo runs in
parallel to the applications, this overhead is hidden, or rather
included in the results. Compared to Native, we observe that
thread interference of Native’s time-sharing model causes
severe synchronization delays for parallel sections in FT and
the serial process of BS. For this scenario, NuPoCo reports a
19% shorter total execution time over Native.

8 CONCLUSION
In this paper, we have presented NuPoCo, a parallelism man-
agement framework for co-located parallel workloads on
NUMA multi-socket multi-core systems. At-runtime perfor-
mance prediction of CPU and memory controller utilization
is used to determine the degree of parallelism for all run-
ning workloads with the goal of maximizing system resource
utilization. The evaluations show that the NuPoCo frame-
work executes multiple OpenMP parallel applications with a
significantly shorter total turnaround time than the Linux
time-sharing model and a existing parallelism management
policy maximizing the CPU utilization.

PACT ’18, November 1–4,2018, Limassol, Cyprus Y. Cho, C. A. C. Guzman, and B. Egger

NuPoCo is able to automatically optimize the performance
of co-located applications. There is additional room for per-
formance improvements for scheduling a batch of parallel
jobs. In future work, we plan to extend NuPoCo to maxi-
mize performance under a given power budget and combine
NuPoCo with a job scheduler in HPC centers.

The NuPoCo framework and the benchmarks used in this
study can be obtained at https://csap.snu.ac.kr/software/.

A ARTIFACT APPENDIX
A.1 Abstract
An artifact is provided to evaluate the NuPoCo framework
and to reproduce the results in Section 7.4.

The artifact consists of three components.

• Runtime environment (RTE): the NuPoCo resource
manager (i.e. the performance model (Section 4) and
the parallelism manager (Section 5)) and a library that
communicates between the resource manager and the
OpenMP applications.
• The GNU OpenMP library: several different ver-
sions of the GNU OpenMP (GOMP) library are pro-
vided to support the execution modes described in
Section 7.3. One of them implements the cooperative
work scheduling technique presented in Section 6.
• Benchmark suite: it includes the benchmark appli-
cations used in Section 7.4 and scripts to automatically
conduct the experiments.

A.2 Artifact check-list (meta-information)
• Algorithm: the framework supports all of the execu-
tion modes described in Section 7.3.
• Program: the RTE is written in C++, and benchmark
applications and the GOMP library are based on C.
Experiment scripts are written in Bash/Python.
• Compilation: gcc/g++, makefile
• Run-time environment: Linux with the numactl
and linuma tools installed.
• Hardware: commodityAMD/Intel multi-socketmulti-
core systems.
• Output: execution times in CSV and plots in EPS files.
• Experiments: reproduce the experiments in Section 7.4.
• Publicly available?: yes, the repository is hosted by
our webserver.

A.3 Description
A.3.1 How delivered. The artifact is delivered as a down-
loadable software package at https://csap.snu.ac.kr/software.
Since some parts are hardware-dependent, we also provide
access to the hardware platforms used for the evaluation. To

get access to the target platforms, please email bernhard@
csap.snu.ac.kr.

A.3.2 Hardware dependencies. The framework assumes com-
modity AMD/Intel NUMA multi-socket multi-core systems
that support collecting the number of memory requests at
each interconnection link and each memory controller from
hardware performance counters.

A.3.3 Software dependencies. The framework assumes a
Linux environment where the numactl and libnuma tools
are installed, and the hardware performance counters are ac-
cessible via the perf interface or Intel’s PCM tool. Our GOMP
libraries are based on gcc-5.4.0.

A.3.4 Data sets. The data sets of the benchmark applica-
tions are provided with the application code.

A.4 Installation
After downloading the artifact, install the RTE framework,
the GOMP libraries, and the benchmark applications using
build scripts in the artifact. The detailed installation steps
are provided in the README.md file in the artifact.

A.5 Experiment workflow
To reproduce the results in Section 7.4, the experiment flow
consists of the following steps, (1) selecting the execution
mode (Section 7.3) through configuration files (2) executing
the run script (3) analyzing the log files through scripts. For
the details, refer to the README.md file in the artifact.

A.6 Evaluation and expected result
The artifact supports experiments in Section 7.4 and gener-
ates the plot files that correspond to Figure 11.

A.7 Experiment customization
Experiment customization such as using different applica-
tions and using different GOMP libraries is possible. The
README.md file contains information to use the NuPoCo
framework for different OpenMP applications.

ACKNOWLEDGMENTS
We thank our reviewers for the helpful feedback. This work
was supported by the National Research Foundation of Ko-
rea (NRF) funded by the Korea government (MSIT) (NRF-
2015K1A3A1A14021288), BK21 Plus for Pioneers in Inno-
vative Computing (Dept. of Computer Science and Engi-
neering, SNU) funded by NRF (21A20151113068), and by the
Promising-Pioneering Researcher Program through Seoul
National University in 2015. ICT at Seoul National University
provided research facilities for this study.

https://csap.snu.ac.kr/software/
https://csap.snu.ac.kr/software
bernhard@csap.snu.ac.kr
bernhard@csap.snu.ac.kr

Maximizing System Utilization via Parallelism Management PACT ’18, November 1–4,2018, Limassol, Cyprus

REFERENCES
[1] 2018. GNU libgomp. http://gcc.gnu.org/onlinedocs/libgomp/. (2018).

[online; accessed July 2018].
[2] AMD. 2012. BIOS and kernel developer’s guide (BKDG) for AMD

family 15h models 00h-0fh processors. (2012).
[3] AMD. 2014. Revision Guide for AMD Family 15h Models 00h-0Fh

Processors. (2014).
[4] AMD. 2018. AMD Opteron 6300 Series Processors. http://www.amd.

com/en-us/products/server/opteron/6000/6300. (2018). [online; ac-
cessed July 2018].

[5] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Rus-
sell L Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson,
Thomas A Lasinski, Rob S Schreiber, et al. 1991. The NAS parallel
benchmarks. International Journal of High Performance Computing
Applications 5, 3 (1991), 63–73.

[6] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles (SOSP ’09). ACM,
New York, NY, USA, 29–44. https://doi.org/10.1145/1629575.1629579

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT ’08). ACM,
New York, NY, USA, 72–81. https://doi.org/10.1145/1454115.1454128

[8] OpenMP Architecture Review Board. 2018. OpenMP. http://openmp.
org. (2018). [online; accessed July 2018].

[9] Jens Breitbart, Simon Pickartz, Stefan Lankes, Josef Weidendorfer,
and Antonello Monti. 2017. Dynamic Co-Scheduling Driven by Main
Memory Bandwidth Utilization. In 2017 IEEE International Conference
on Cluster Computing (CLUSTER). 400–409. https://doi.org/10.1109/
CLUSTER.2017.59

[10] Jens Breitbart, Josef Weidendorfer, and Carsten Trinitis. 2015. Case
Study on Co-scheduling for HPC Applications. In 2015 44th Interna-
tional Conference on Parallel Processing Workshops. 277–285. https:
//doi.org/10.1109/ICPPW.2015.38

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-
mark suite for heterogeneous computing. In 2009 IEEE International
Symposium on Workload Characterization (IISWC). 44–54. https:
//doi.org/10.1109/IISWC.2009.5306797

[12] Younghyun Cho, Surim Oh, and Bernhard Egger. 2016. Online scal-
ability characterization of data-parallel programs on many cores. In
2016 International Conference on Parallel Architecture and Compilation
Techniques (PACT). 191–205. https://doi.org/10.1145/2967938.2967960

[13] Younghyun Cho, Surim Oh, and Bernhard Egger. 2017. Adaptive Space-
Shared Scheduling for Shared-Memory Parallel Programs. In Job Sched-
uling Strategies for Parallel Processing. JSSPP 2015, JSSPP 2016. Lecture
Notes in Computer Science, vol. 10353. Springer International Publishing,
Cham, 158–177. https://doi.org/10.1007/978-3-319-61756-5_9

[14] Timothy Creech, Aparna Kotha, and Rajeev Barua. 2013. Efficient
multiprogramming for multicores with SCAF. In 2013 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[15] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud,
Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth.
2013. Traffic Management: A Holistic Approach to Memory Place-
ment on NUMA Systems. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’13). ACM, New York, NY, USA, 381–394.
https://doi.org/10.1145/2451116.2451157

[16] Murali Krishna Emani and Michael O’Boyle. 2015. Celebrating Diver-
sity: A Mixture of Experts Approach for Runtime Mapping in Dynamic
Environments. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’15). ACM,
NewYork, NY, USA, 499–508. https://doi.org/10.1145/2737924.2737999

[17] Daniel Goodman, Georgios Varisteas, and Tim Harris. 2017. Pandia:
Comprehensive Contention-sensitive Thread Placement. In Proceed-
ings of the Twelfth European Conference on Computer Systems (EuroSys
’17). ACM, New York, NY, USA, 254–269. https://doi.org/10.1145/
3064176.3064177

[18] Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. 2011. A
Workload-aware Mapping Approach for Data-parallel Programs. In
Proceedings of the 6th International Conference on High Performance
and Embedded Architectures and Compilers (HiPEAC ’11). ACM, New
York, NY, USA, 117–126. https://doi.org/10.1145/1944862.1944881

[19] Camilo A. Celis Guzman, Younghyun Cho, and Bernhard Egger. 2017.
SnuMAP: an Open-source Trace Profiler for Manycore Systems. https:
//csap.snu.ac.kr/software/snumap/. (2017). [online; accessed July
2018].

[20] Tim Harris, Martin Maas, and Virendra J. Marathe. 2014. Callisto:
Co-scheduling Parallel Runtime Systems. In Proceedings of the Ninth
European Conference on Computer Systems (EuroSys ’14). ACM, New
York, NY, USA, Article 24. https://doi.org/10.1145/2592798.2592807

[21] Wim Heirman, Trevor E. Carlson, Kenzo Van Craeynest, Ibrahim Hur,
Aamer Jaleel, and Lieven Eeckhout. 2014. Undersubscribed threading
on clustered cache architectures. In 2014 IEEE 20th International Sym-
posium on High Performance Computer Architecture (HPCA). 678–689.
https://doi.org/10.1109/HPCA.2014.6835975

[22] Intel. 2015. Intel 64 and IA-32 Architectures Software Developer’s
Manual. (2015).

[23] Intel. 2015. Intel Xeon Processor E5 and E7 v3 Family Uncore Perfor-
mance Monitoring Reference Manual. (2015).

[24] Intel. 2018. Intel Performance Counter Monitor - A better way to
measure CPU utilization. http://www.intel.com/software/pcm. (2018).
[online; accessed July 2018].

[25] Intel. 2018. Intel Xeon Processor E7-8870 v3. http://ark.intel.com/
products/84682/Intel-Xeon-Processor-E7-8870-v3-45M-Cache-2_
10-GHz. (2018). [online; accessed July 2018].

[26] Henk Jonkers. 1994. Queueing models of parallel applications: the
Glamis methodology. In Computer Performance Evaluation Modelling
Techniques and Tools. Springer, 123–138.

[27] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. 2013.
ADAPT: A Framework for Coscheduling Multithreaded Programs.
ACM Trans. Archit. Code Optim. 9, 4, Article 45 (Jan. 2013), 24 pages.
https://doi.org/10.1145/2400682.2400704

[28] Janghaeng Lee, HaichengWu, Madhumitha Ravichandran, and Nathan
Clark. 2010. Thread Tailor: Dynamically Weaving Threads Together
for Efficient, Adaptive Parallel Applications. In Proceedings of the 37th
Annual International Symposium on Computer Architecture (ISCA ’10).
ACM, New York, NY, USA, 270–279. https://doi.org/10.1145/1815961.
1815996

[29] Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanović,
and John Kubiatowicz. 2009. Tessellation: Space-time Partitioning in a
Manycore Client OS. In Proceedings of the First USENIX Conference on
Hot Topics in Parallelism (HotPar’09). USENIX Association, Berkeley,
CA, USA, 10–10. http://dl.acm.org/citation.cfm?id=1855591.1855601

[30] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade
of Wasted Cores. In Proceedings of the Eleventh European Conference
on Computer Systems (EuroSys ’16). ACM, New York, NY, USA, Article
1, 16 pages. https://doi.org/10.1145/2901318.2901326

http://gcc.gnu.org/onlinedocs/libgomp/
http://www.amd.com/en-us/products/server/opteron/6000/6300
http://www.amd.com/en-us/products/server/opteron/6000/6300
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/1454115.1454128
http://openmp.org
http://openmp.org
https://doi.org/10.1109/CLUSTER.2017.59
https://doi.org/10.1109/CLUSTER.2017.59
https://doi.org/10.1109/ICPPW.2015.38
https://doi.org/10.1109/ICPPW.2015.38
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/2967938.2967960
https://doi.org/10.1007/978-3-319-61756-5_9
https://doi.org/10.1145/2451116.2451157
https://doi.org/10.1145/2737924.2737999
https://doi.org/10.1145/3064176.3064177
https://doi.org/10.1145/3064176.3064177
https://doi.org/10.1145/1944862.1944881
https://csap.snu.ac.kr/software/snumap/
https://csap.snu.ac.kr/software/snumap/
https://doi.org/10.1145/2592798.2592807
https://doi.org/10.1109/HPCA.2014.6835975
http://www.intel.com/software/pcm
http://ark.intel.com/products/84682/Intel-Xeon-Processor-E7-8870-v3-45M-Cache-2_10-GHz
http://ark.intel.com/products/84682/Intel-Xeon-Processor-E7-8870-v3-45M-Cache-2_10-GHz
http://ark.intel.com/products/84682/Intel-Xeon-Processor-E7-8870-v3-45M-Cache-2_10-GHz
https://doi.org/10.1145/2400682.2400704
https://doi.org/10.1145/1815961.1815996
https://doi.org/10.1145/1815961.1815996
http://dl.acm.org/citation.cfm?id=1855591.1855601
https://doi.org/10.1145/2901318.2901326

PACT ’18, November 1–4,2018, Limassol, Cyprus Y. Cho, C. A. C. Guzman, and B. Egger

[31] Kun Luo, Jayanth Gummaraju, and Manoj Franklin. 2001. Balancing
thoughput and fairness in SMT processors. In 2001 IEEE International
Symposium on Performance Analysis of Systems and Software. ISPASS.
164–171. https://doi.org/10.1109/ISPASS.2001.990695

[32] Zoltan Majo and Thomas R. Gross. 2011. Memory Management in
NUMA Multicore Systems: Trapped Between Cache Contention and
Interconnect Overhead. SIGPLAN Not. 46, 11 (June 2011), 11–20. https:
//doi.org/10.1145/2076022.1993481

[33] Zoltan Majo and Thomas R Gross. 2012. Matching memory access
patterns and data placement for NUMA systems. In Proceedings of the
Tenth International Symposium on Code Generation and Optimization.
ACM, 230–241.

[34] John D. McCalpin. 1991-2007. STREAM: Sustainable Memory
Bandwidth in High Performance Computers. Technical Report.
University of Virginia, Charlottesville, Virginia. http://www.
cs.virginia.edu/stream/ A continually updated technical report.
http://www.cs.virginia.edu/stream/.

[35] Ryan W. Moore and Bruce R. Childers. 2012. Using utility prediction
models to dynamically choose program thread counts. In 2012 IEEE
International Symposium on Performance Analysis of Systems Software.
135–144. https://doi.org/10.1109/ISPASS.2012.6189220

[36] Bhyrav Mutnury, Frank Paglia, James Mobley, Girish K. Singh, and
Ron Bellomio. 2010. QuickPath Interconnect (QPI) design and analysis
in high speed servers. In 19th Topical Meeting on Electrical Performance
of Electronic Packaging and Systems. 265–268. https://doi.org/10.1109/
EPEPS.2010.5642789

[37] Arun Raman, Hanjun Kim, Taewook Oh, Jae W. Lee, and David I.
August. 2011. Parallelism Orchestration Using DoPE: The Degree of
Parallelism Executive. In Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI ’11).
ACM, New York, NY, USA. https://doi.org/10.1145/1993498.1993502

[38] Arun Raman, Ayal Zaks, Jae W. Lee, and David I. August. 2012. Par-
cae: A System for Flexible Parallel Execution. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’12). ACM, New York, NY, USA, 133–144.
https://doi.org/10.1145/2254064.2254082

[39] James Reinders. 2007. Intel threading building blocks: outfitting C++ for
multi-core processor parallelism. O’Reilly Media, Inc.

[40] Gabriele Sartori. 2001. Hypertransport Technology. Platform Confer-
ence (2001).

[41] Hiroshi Sasaki, Satoshi Imamura, and Koji Inoue. 2013. Coordinated
power-performance optimization in manycores. In Proceedings of the
22nd International Conference on Parallel Architectures and Compilation
Techniques. 51–61. https://doi.org/10.1109/PACT.2013.6618803

[42] Hiroshi Sasaki, Teruo Tanimoto, Koji Inoue, and Hiroshi Nakamura.
2012. Scalability-based Manycore Partitioning. In Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques (PACT ’12). ACM, New York, NY, USA, 107–116. https:
//doi.org/10.1145/2370816.2370833

[43] Sangmin Seo, Gangwon Jo, and Jaejin Lee. 2011. Performance charac-
terization of the NAS Parallel Benchmarks in OpenCL. In 2011 IEEE
International Symposium on Workload Characterization (IISWC). 137–
148. https://doi.org/10.1109/IISWC.2011.6114174

[44] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. 2014. Adaptive,
Efficient, Parallel Execution of Parallel Programs. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’14). ACM, New York, NY, USA, 169–180.
https://doi.org/10.1145/2594291.2594292

[45] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. 2015.
Data Sharing or Resource Contention: Toward Performance Trans-
parency on Multicore Systems. In 2015 USENIX Annual Technical Con-
ference (USENIX ATC 15). USENIX Association, Santa Clara, CA, 529–
540. https://www.usenix.org/conference/atc15/technical-session/
presentation/srikanthan

[46] János Sztrik. 2011. Basic queueing theory. University of Debrecen:
Faculty of Informatics (2011).

[47] Bogdan Marius Tudor and Yong Meng Teo. 2011. A practical approach
for performance analysis of shared-memory programs. In Parallel
& Distributed Processing Symposium (IPDPS), 2011 IEEE International.
IEEE, 652–663.

[48] Bogdan Marius Tudor, Yong Meng Teo, and Simon See. 2011. Under-
standing off-chip memory contention of parallel programs in multicore
systems. In Parallel Processing (ICPP), 2011 International Conference on.
IEEE, 602–611.

[49] David Wentzlaff, Charles Gruenwald III, Nathan Beckmann, Kevin
Modzelewski, Adam Belay, Lamia Youseff, Jason Miller, and Anant
Agarwal. 2010. An operating system for multicore and clouds: mecha-
nisms and implementation. In Proceedings of the 1st ACM symposium
on Cloud computing. ACM, 3–14.

[50] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. 2010.
Addressing Shared Resource Contention in Multicore Processors via
Scheduling. In Proceedings of the Fifteenth Edition of ASPLOS on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (ASPLOS XV). ACM, New York, NY, USA, 129–142. https:
//doi.org/10.1145/1736020.1736036

https://doi.org/10.1109/ISPASS.2001.990695
https://doi.org/10.1145/2076022.1993481
https://doi.org/10.1145/2076022.1993481
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
https://doi.org/10.1109/ISPASS.2012.6189220
https://doi.org/10.1109/EPEPS.2010.5642789
https://doi.org/10.1109/EPEPS.2010.5642789
https://doi.org/10.1145/1993498.1993502
https://doi.org/10.1145/2254064.2254082
https://doi.org/10.1109/PACT.2013.6618803
https://doi.org/10.1145/2370816.2370833
https://doi.org/10.1145/2370816.2370833
https://doi.org/10.1109/IISWC.2011.6114174
https://doi.org/10.1145/2594291.2594292
https://www.usenix.org/conference/atc15/technical-session/presentation/srikanthan
https://www.usenix.org/conference/atc15/technical-session/presentation/srikanthan
https://doi.org/10.1145/1736020.1736036
https://doi.org/10.1145/1736020.1736036

	Abstract
	1 Introduction
	2 Related Work
	2.1 Parallelism Management
	2.2 Cooperative Parallel Runtimes
	2.3 Thread and Data Placement

	3 Background and Motivation
	3.1 Multi-socket Multi-core Systems
	3.2 Parallel workloads
	3.3 Modeling Performance Metrics
	3.4 Performance Analysis
	3.5 The NuPoCo Policy

	4 Online Performance Model
	4.1 Memory Controller Utilization
	4.2 CPU Core Utilization
	4.3 Implementation and Validation

	5 Managing Parallelism
	5.1 Online Profiling
	5.2 DoP Computation
	5.3 Thread Placement

	6 Cooperative OpenMP Runtime
	6.1 Cooperative Loop Scheduling

	7 Evaluation
	7.1 Experimental Platforms
	7.2 Target Applications
	7.3 Execution Modes
	7.4 Co-location Scenarios
	7.5 Case-Study and Overhead Analysis

	8 Conclusion
	A Artifact appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

	References

